THE PART OF THE PA	Roll No.					
	Sig. of Cand	idate	,	· · - <u>-</u>	-	

Answer Sneet No	
Sig. of Invigilator.	

PHYSICS HSSC-II

Œ:			Minutes	A II	-£ 41			on Nun				
· E.	Section—A is compulsory. All parts of this section are to be answered on the question paper itself. It should be completed in the first 25 minutes and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.											
	Circle the correct option i.e. A / B / C / D. Each part carries one mark.											
	(i)	As ma A.	ss number incre Density	as es , wh	ich of the follow Binding energy	ing does	not change? Mass	D.	Volume			
	(ii)	The ha	alf life of radioac									
		A	$T_{\frac{1}{2}} = 0.693 \lambda$	B.	$T_{\frac{1}{2}} = \frac{\lambda}{0.693}$	C.	$T_{\frac{1}{2}} = \frac{0.693}{\lambda}$	D.	$T_{\frac{1}{2}}=1.43~\lambda$			
	(iii)	The di A. C.	rection of field lin Circular Radially outwa		o a test charge	" + q" is: B. D.	Curve Radially inward	d				
	(iv)	The di A. C.	mensional repre Momentum Gravitational c		ı of Planck's cor	nstant is B. D.						
	(v)	ine st	orea energy will	be:	nas a charge 'Q'				charge is increased to			
		Α.	2 <i>w</i>	B.	4w	C.	W 4	D.	<u>w</u> 2			
	(vi)	A.	Faraday's law	В.	n a resistor wher Lenz's law	n a curre C.	ent is passed thro Joule's law	ough it, D.	can be found by using Kirchhoff's rule			
	(vii)	A.	units of resistivi Ωm	В.	Ωm^{-1}		Ωm^2	D.	$\Omega^{-1}m^{-1}$			
	(viii)	The $\frac{e}{m}$	of an electron m	oving wit	h the speed alo	ng a circ	ular path in a ma	agnetic	field is given as:			
		A.	$\frac{e}{m} = \frac{E^2}{B^2 R}$	B.	$\frac{e}{m} = \frac{ER}{B^2}$	C.	$\frac{e}{m} = \frac{B^2 R}{E}$	D.	$\frac{e}{m} = \frac{E}{B^2 R}$			
	(ix)	An inst A. C.	rument which ca Cathode Ray C Voltmeter	an meast Oscillosco	ure potential with ope (CRO)	nout drav B. D.	ving any current Ammeter Galvanometer	is:				
	(x)	If L and	d R represent inc	luctance	and resistance	respectiv	vely, then the dir	nension	is of $\frac{L}{r}$ will be:			
	(xi)	Α.	$[M^0L^{-1}T^{-2}]$ at principle does	B.	$[M^0L^0T]$	C.	$[M^0L^0T^{-1}]$	D.	$[M^{6}_{}L^{0}T^{-2}]$			
		A. C.	Ohm's Law Electrostatic Inc			B. D.	Mutual Induction					
((xii)	"Eddy (A. C.	Currents" are se At an angle 45° Parallel to the f	to the flu		B. D.	Perpendicular t		ıx			
((xiii)	The r.n	n.s value of the of $4\sqrt{2}A$		hen $I_0 = 2A$ is g $\frac{1}{\sqrt{2}}A$	iven by: C.	$\sqrt{2}A$	D.	2√2 <i>A</i>			
((xiv)	If the ca	apacitance of LC Four times	circuit is	* -	es then tl	he frequency of T wice	the circi	uit becomes: One half			
((xv)	What a A. C.	re substances ca Amorphous s oli Brittle substanc	ds	ch undergo plas	tic defor B. D.	mation until they Polymeric solid Ductile substan	S				
((xvi)	The su zero ar A.	e called:				orbital and spin	electro	ons of molecule add u			
ſ	(XVİİ)		Paramagnetic h type of logic as		Super magnetic		Ferromagnetic		Diamagnetic			
,	,^VII)	A.	h type of logic ga NOT gate		NOR gate	C.	OR gate	D.	AND gate			

Marks Obtained:

----- 2HA 1708 (L) *** -----

(4)

(2+2+2)

(2+3)

(2)

c.

a.

b.

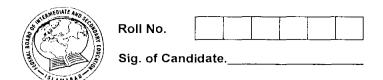
C.

Q. 5

PHYSICS HSSC-II

Total Marks Sections B and C: 68 Time allowed: 2:35 Hours Answer any fourteen parts from Section 'B' and any two questions from Section 'C' on the separately NOTE: provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly. SECTION - B (Marks 42) $(14 \times 3 = 42)$ Answer any FOURTEEN parts. The answer to each part should not exceed 3 to 4 lines. Q. 2 Electric lines of force never cross why? (i) The potential is constant throughout a given region of space. Is the electric field zero or non-zero in (ii) this region? Explain. Is the filament resistance lower or higher in 500W, 220V light bulb than in a 100W, 220V bulb? (iii) What are the difficulties in testing whether the filament of a lighted bulb obeys Ohm's law? (iv)What is meant by A.M. and F.M.? (V)Show graphically the phase relationship between the current and the voltage across an inductor. (vi) Show that ϵ and $\frac{\Delta \emptyset}{\Delta t}$ have the same units. (vii) Does the induced emf always act to decrease the magnetic flux through a circuit? (viii) What is meant by Hysteresis loss? How is it used in the construction of a transformer? (ix)In a transformer there is no transfer of charge from the primary to the secondary coil. How is then (x)power transferred? A sinusoidal current has r.m.s (effective) value of 10A. What is the maximum or peak value? (xi) Which proton red, green or blue carries the most energy and momentum? (xii) If measurements show a precise position for electron. Can those measurements show precise (xiii) momentum also? Explain. Why a photo diode is operated in reverse biased state? (xiv)How have the results of the special theory of relativity been applied to NAVSTAR navigation system? (xv)How can the spectrum of hydrogen contain so many lines when hydrogen contains one electron? (ivx) If an electron and a proton have the same de-Broglie wavelength. Which particle has greater speed? (xvii) What do you mean by the term "Critical mass"? (xviii) Which radiation dose would deposit more energy to the body? (xix)1 mGy does to the entire body 10 mGy to the hand (b) (a) SECTION - C (Marks 26) $(2 \times 13 = 26)$ Note: Attempt any TWO questions. Derive an expression for energy stored in a charged capacitor. Also calculate the energy density Q. 3 a. (3+2)stored in any electric field. Explain how moving coil Galvanometer can be converted into: (2+2)b. A Voltmeter An Ammeter (ii) What shunt resistance must be connected across a galvanometer of 50Ω resistance which gives C. full scale deflection with 2mA current so as to convert it into an ammeter of range 10A? (4)(2+5)What are Transistors? How can we use transistor as an amplifier? Q. 4 a. (2) b. What is a voltage gain of an amplifier? The current flowing into the base of the transistor is $100\mu A$. Find the collector current I_{C} , emitter

What is Compton Effect? How was this phenomenon explained by A.H. Compton on the basis


current I_E and the ratio $\frac{I_C}{I_E}$ if the value of the current gain β is 100.

What is Laser? Describe its principle and operation.

The half life of $\frac{\pi}{2}Sr$ is 9.70 hours. Find its decay constant.

of the particle theory of light?

7	4
1	

Answer Sheet No	
Sig. of Invigilator	

PHYSICS HSSC-II SECTION - A (Marks 17)

Time allowed: 25 Minutes

Version Number 1 7 0 7

NOTE:	Section—A is compulsory. All parts of this section are to be answered on the question paper itself. It should be completed in the first 25 minutes and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.										
Q. 1	Circle	the cor	rect option i.e.	A/B/C	C / D. Each pa	art carries	one mark.	<u> </u>			
	(i) Leptons are the particles that do not experience A. Electric force C. Weak nuclear force						ee; B. Magnetic force D. Strong nuclear force				
	(ii)	γ-rays A. C.	can cause phot Equal to 0.1 M Less than 0.1 I	ev	emission wh	en their ene B. D	ergy is: Equal to 0.5 <i>M</i> Greater than (
	(iii)		tio of gravitation		F_g to the elect 24×10^{-44}				rons, the same distance 24×10^9		
	(iv)		ectric intensity n $\frac{q}{A}$					D.	$\frac{\sigma}{2\epsilon_0}$		
	(v)	The te			ce of a battery $V_t = \frac{\epsilon - r}{l}$		· ·		omotive force ϵ is: $V_t = \epsilon - Ir$		
	(vi)	The ad A. C.	ccurate potential Neither very lo Very low resist	w nor ve		ould be of: B. D.	Infinite resista Very high resi				
	(vii)	The pr A.	ocess of combir Resonance	ning low B.	frequency sig Impedance		nigh frequency ra Demodulation		ve is called: Modulation		
	(viii)	According to Faraday's Law, emf induced in a c A. Change in magnetic flux C. Maximum magnetic flux					epends on: Initial magneti Rate of chang		gnetic flux		
	(ix)	In Con A. C.	npton scattering Angle of scatte Angle of scatte	ering is 1	180°	velength is B. D.	maximum if: Angle of scatt Angle of scatt				
	(x)	The colour of light emitted by LED depends on: A. The amount of forward current C. Its forward bias					B. The type of semiconductor material usedD. Its reverse bias				
	(xi)	The ou A. C.	itput of a two inp Both inputs are Both inputs are	e 1	gate is 0 only	when its: B. D.	Either input is Either input is				
	(xii)	If an o A. C.	bject moves with Some extent la Zero		city of light, its	mass beco B. D.	omes: Infinity Very small				
	(xiii)	The at A. C.	om bomb is an e Uncontrolled n Controlled nuc	uclear f	ission	B. D.	Uncontrolled r				
	(xiv)	The ex A. C.	kistence of positi Electromagnet Thermal radiat	ic radiat		the: B. D.	Non-electroma Cosmic radiat		radiation		
	(xv)	A.	ch region of elec Ultraviolet	B.	netic spectrum X-rays	of Hydrogo C.	en, the Balmer s Infrared	eries lie D.	es? Visible		
	(xvi)	The re	st mass of photo 1	on is: B.	0.5	C.	Infinity	D.	Zero		
	(xvii)	The at	sorption power -1	of a per B.	fect black boo 100	ly is always C.	: Zero	D.	1		

For Examiner's use only:

Total Marks:

—— 2HA 1708 (ON) ***

17

Marks Obtained:

(3+4)

(1+3+2)

PHYSICS HSSC-II

Time allowed: 2:35 Hours

Total Marks Sections B and C: 68

NOTE: Answer any fourteen parts from Section 'B' and any two questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet–B if required. Write your answers neatly and legibly.

SECTION - B (Marks 42)

$1/4 \times 3 = 42$	Q. 2	Answer any FOURTEEN parts. T	The answer to each part should not exceed 3 to 4 lines.	$(14 \times 3 = 42)$
---------------------	------	------------------------------	---	----------------------

- Suppose you follow an electric field line due to a positive charge. Do the electric field and potential increase or decrease?
- (ii) Compare electric and gravitational forces.
- (iii) Is it possible to orient a current loop in a uniform magnetic field such that loop will not tend to rotate? Explain.
- (iv) If a charge particle moves in a straight line through some region of space, can you say that the magnetic field in the region is zero?
- (v) Name the device that will (a) permit flow of direct current but oppose the flow of A.C. current (b) permit flow of A.C. current but not that of the direct current.
- (vi) What is meant by A.M and F.M.
- (vii) Define elastic limit. Also write SI units.
- (viii) What is the effect of forward and reverse biasing of a diode on the width of depletion region?
- (ix) A transformer steps down the voltage of 220*V* to 20*V* with the help of 20 turns on the secondary coi. What is the number of turns on the primary?
- (x) What do you understand by an equipotential surface in an electric field?
- (xi) Verify that an $ohm \times farad$ is equivalent to second.
- (xii) Photon A has twice the energy of photon B. What is the ratio of the momentum of A to momentum of B?
- (xiii) What factors make a fusion reaction difficult to achieve?
- (xiv) If an electron and proton have the same de-Broglie wavelength, which particle has greater speed?
- (xv) What happens to a total radiation from a black body if the absolute temperature is doubled?
- (xvi) Is energy conserved when an atom emits a photon of light?
- (xvii) Why ordinary silicon diodes do not emit light?

exist inside the nucleus?

b.

- (xviii) What is photon?
- (xix) Show graphically the phase relationship between the current and voltage across an inductor.

SECTION - C (Marks 26)

Note: Attempt any TWO questions. $(2 \times 13 = 26)$ Q. 3 What is a capacitor and its capacitance? Discuss the factors upon which capacitance of a a. capacitor depends. Obtain the expression for the dielectric constant. (1+1+6)Describe the change in magnetic field inside a solenoid carrying a steady current I, if: h (2.5+2.5)The length of the solenoid is doubled, but the number of turns remains same i)The number of terms is doubled but length remains same What is wheat stone bridge? Explain and prove the principle of wheat stone bridge? How it can Q. 4 a. be used to find the unknown resistance of a wire? (1+3+2)A platinum wire has resistance of 10Ω at $0\,^{\circ}\text{C}$ and 20Ω at $273\,^{\circ}\textit{C}$. Find the value of temperature b. co-efficient of resistance of platinum. (4) C. State and explain Kirchhoff's voltage rule. (3) Q. 5 What is an uncertainty principle? How does uncertainty principle explain that electrons cannot

What is Hysteresis loop? Write down its main features and its uses.